post https://api.ai21.com/studio/v1/embed
Overview
Provide a vector representation of the provided text.
Embedding vectors encode semantic information about the given text. This can be used as a basis for various use cases including custom RAG engine implementations, semantic search, clustering, and classification.
Examples
import os
from ai21 import AI21Client
from ai21.models import EmbedType
os.environ["AI21_API_KEY"] = <YOUR_API_KEY>
client = AI21Client()
def embedding():
response = client.embed.create(
texts=["You can now use AI21 Embeddings."],
type=EmbedType.SEGMENT
)
print(response.to_json())
import requests
ROOT_URL = "https://api.ai21.com/studio/v1/"
def embedding():
url = ROOT_URL + "embed"
data = {
"texts": ["You can now use AI21 Embeddings."],
"type": "segment"
}
response = requests.post(
url=url,
headers={"Authorization": f"Bearer {AI21_API_KEY}"},
json=data
)
print(response.json())
{
"id": "4f38bb78-61b7-1a86-dc1f-405683c99dd6",
"results": [
{
"embedding": [
0.037780508399009705,
-0.015447948127985,
-0.004723816178739071,
-0.03125549480319023,
0.015297219157218933,
...
]
}
]
}
Response
id
results
Array of embedding vectors, parallel to the array of texts passed in. Each embedding looks like this:
{ "embedding": [float_1, float_2, ..., float_n]}